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A B S T R A C T   

Maps of the distribution of medically-important ticks throughout the US remain lacking in spatial and temporal 
resolution in many areas, leading to holes in our understanding of where and when people are at risk of tick 
encounters, an important baseline for informing public health response. In this work, we demonstrate the use of 
Bayesian Experimental Design (BED) in planning spatiotemporal surveillance of disease vectors. We frame survey 
planning as an optimization problem with the objective of identifying a calendar of sampling locations that 
maximizes the expected information regarding some goal. Here we consider the goals of understanding associ
ations between environmental factors and tick presence and minimizing uncertainty in high risk areas. We 
illustrate our proposed BED workflow using an ongoing tick surveillance study in South Carolina parks. 
Following a model comparison study based on two years of initial data, several techniques for finding optimal 
surveys were compared to random sampling. Two optimization algorithms found surveys better than all repli
cations of random sampling, while a space-filling heuristic performed favorably as well. Further, optimal surveys 
of just 20 visits were more effective than repeating the schedule of 111 visits used in 2021. We conclude that BED 
shows promise as a flexible and rigorous means of survey design for vector control, and could help alleviate 
pressure on local agencies by limiting the resources necessary for accurate information on arthropod distribu
tions. We have made the code for our BED workflow publicly available on Zenodo to help promote the appli
cation of these methods to future surveillance efforts.   

1. Introduction 

Tickborne diseases have tripled in the last two decades and now 
make up more than 75% of reported vector-borne infections in the 
United States (Rosenberg et al., 2018). The continued geographic 
expansion of several medically important tick species is likely a key 
contributor to this sharp increase in tickborne disease incidence (Kug
eler et al., 2015; Sonenshine, 2018). An accurate understanding of the 
spatial and temporal distribution of medically important ticks is a 
crucial first step to informing when and where people are at risk, and 
forms the basis of public health programs for the diagnosis and pre
vention of tickborne diseases (Eisen and Paddock, 2021). However, 
maps of tick distributions throughout the US are lacking in spatial and 

temporal resolution, and often depend on outdated sources, disparate 
sampling techniques, or otherwise biased data (Schulze et al., 1997; 
Wisely and Glass, 2019). Statistical models are therefore important tools 
for explaining factors associated with tick presence and filling gaps in 
existing distribution maps. However, the reliability of model predictions 
are critically dependent on the amount and quality of input data at an 
appropriate spatiotemporal scale (Kugeler and Eisen, 2020). An area 
with particularly limited knowledge of current tick distributions is the 
southeastern US, where local resources for monitoring and control are 
scarce and less than 10% of vector control agencies perform tick sur
veillance of any kind (Dye-Braumuller et al., 2022; Mader et al., 2021). 

In addition to learning from existing data, a further use of tick dis
tribution models is informing future surveillance and control efforts by 
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anticipating the value of future sampling locations. For example, more 
fine-grained sampling might follow an initial surveillance effort focused 
on a subset of areas of potentially high risk (Diuk-Wasser et al., 2010). 
Though usually such sampling decisions are made in an ad hoc manner, 
a decision-theoretic alternative is to assign a score to potential sampling 
times and locations and attempt to find visits maximizing some objective 
function (Dorazio and Johnson, 2003). Deciding future visits for sur
veillance or control efforts may then be framed as an optimal experi
mental design problem, where a calendar of sampling times and/or 
locations is chosen to maximize their information content or increase the 
impact of vector control measures (Case et al., 2022; Reich et al., 2018). 
Because observational studies of tick distributions involve complex in
teractions between variable environmental conditions, population dy
namics, and the collection method used, it is important to employ design 
criteria that are robust to uncertainty in model parameters and experi
mental conditions (Pronzato and Walter, 1985). 

Thanks to computational advances in recent decades, Bayesian 
inference has become popular for model fitting in ecology and epide
miology (Parent and Rivot, 2012). The advantages of Bayesian inference 
include a complete treatment of model uncertainty through providing 
posterior distributions of plausible model parameters and predicted tick 
distributions, and the ability to incorporate entomological or medical 
knowledge through prior beliefs. For experimental design, the Bayesian 
paradigm provides a framework that is robust to system uncertainty and 

flexible for tailoring novel design criteria to specific challenges in public 
health (Diggle et al., 2021; Ryan et al., 2016). 

Implementing Bayesian Experimental Design (BED) involves three 
general steps (Fig. 1). First, a statistical model is chosen based on its 
suitability to explain any existing survey data, resulting in a posterior 
distribution that represents how much we have learned based on this 
initial survey. Here, learning indicates our level of confidence about 
inferred parameters in the model, as well as our confidence in predicted 
tick distributions. While we focus on binary presence/absence data in 
this work, other metrics such as tick abundance may be used with an 
appropriate choice of model. Next, a utility function is developed to score 
potential future survey schedules based on the expected quality of new 
information. How new information is quantified depends on the specific 
goals of surveillance, for example whether the objective is to reduce 
some form of uncertainty or to maximize the number of sites positive for 
ticks. Finally, the space of possible designs is searched for highly 
informative survey schedules using optimization. The output of these 
three steps is then a calendar of sampling times and locations that can be 
directly implemented as a future surveillance effort. Note that while an 
initial dataset is not required for BED, we frame the method for the 
situation where preliminary data are available from previous surveil
lance efforts. This information can help inform an appropriate model 
choice, and more effectively differentiate high quality designs (Ryan 
et al., 2015; Zhang, 2006). 

Fig. 1. Implementing Bayesian Experimental Design in spatiotemporal surveillance. A motivating example with a single environmental covariate is shown, with the 
goal of establishing environmental factors associated with tick presence. Top: a small design space consisting of four possible survey locations (e.g. parks) and four 
timepoints (e.g. months). A surveillance schedule is a collection of visits (time-location pairs) and amounts to arranging points in design space. The changing values 
of the environmental covariate x are shown for each survey point, and the values of x corresponding to a design d are mapped to the 1-dimensional covariate space, 
indicated by arrows for each d. Bottom: in step 1, a response yinit and associated x values from an initial survey dinit are shown in covariate space, two candidate 
models are compared, and a posterior distribution for the selected model is fit. In step 2, the utility of some candidate design is defined as an average over future 
outcomes and the amount of new information that would be provided by each outcome. Here a Bayesian d-optimality criterion is used, which scores outcomes based 
on the volume of confidence ellipsoids approximating the updated posterior distribution. In step 3, finding an effective design is treated as an optimization problem 
over the space of candidate designs. A generic stepwise procedure is shown, and the best design found after 100 iterations is then examined. In accordance with BED 
theory, this design spread additional points throughout the middle of covariate space, while putting special attention at the extreme x ≈ 2 which was under-sampled 
in the initial survey. 
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In this work, we outline principles for how BED can be incorporated 
in spatiotemporal surveys to maximize the value of vector surveillance 
and control efforts, and we illustrate their use for an ongoing tick sur
veillance effort of South Carolina state parks and other public lands. We 
compare the ability of different search techniques to find survey 
schedules that maximize utility based on two design criteria tailored to 
different priorities of vector surveillance. In addition to informing future 
data collection efforts, we demonstrate how high utility designs can be 
further analyzed to provide novel insight into sources of uncertainty in 
tick distributions. 

2. Methods 

2.1. Data collection and preparation 

Data originated from an existing state-wide tick surveillance project 
in South Carolina city and state parks, beginning in March 2020. The 
project also included submissions from South Carolina animal shelters 
and citizen scientists, though these data were not used in this study. 
Here we used data from 2020 to 2021 state and city parks, with obser
vations in 30 distinct parks spanning 26 counties from March to 
December. Sampling was relatively opportunistic; more visits took place 
between March and August compared to later months, and 4 parks were 
visited at least 10 times over the two years while 3 parks were visited 
just once. In total, 59 distinct visits occurred in 2020, and 111 visits 
occurred in 2021. 

A scientific collecting permit from the SC Department of Parks, 
Recreation, & Tourism was secured for both years, and written 
permission was granted from the appropriate municipal government for 
city parks. The coordinates for each site were selected near the entrance 
to each park in a forested area for consistency. Tick collections were 
performed following recommended CDC Ixodidae surveillance guide
lines (Centers for Disease Control and Prevention, 2021). In brief, tick 
traps consisting of a 0.61m2 muslin cloth baited with 1.5-lb dry ice each 
were placed in parks along hiking and nature trails and left in the park 
for 1.5–2 h. Additionally, tick drags were performed along hiking and 
nature trails. Tick drags were constructed with a 1.22-m x 1.52-m white 
duck canvas attached to a 1.22-m wooden dowel, with zinc washers as 
weights on the bottom. Each collection visit consisted of ten tick traps 
and a 30 min timed tick drag (sixty 30-second segments to regularly 
check for ticks) to ensure that the recommended surface area of at least 
750 m for host-seeking ticks was surveyed (Centers for Disease Control 
and Prevention, 2021). 

Ticks were processed at the Laboratory of Vector-Borne and Zoonotic 
Diseases at the University of South Carolina, where they were identified 
to species, sex, and life stage. Morphological identifications were con
ducted with multiple dichotomous keys (Clifford and Anastos, 1960; 
Keirans and Durden, 1998; Keirans and Litwak, 1989). The response 
outcome for each visit was then recorded as a binary variable of pre
sence/absence for each species, where presence indicates nymphs were 
found with at least one of the two sampling methods. Amblyomma 
maculatum, Ixodes brunneus, and I. kearnsi (formerly I. affinis (Nava et al., 
2023)) were present in only 3, 5, and 12 of these visits, respectively. 
Therefore to improve the quality of model predictions, A. maculatum was 
removed from all further analyses, and the Ixodes species were aggre
gated into a single Ixodes spp. group. Amblyomma americanum was found 
in 45% of the 170 visits, Ixodes spp. was found in 24%, and Dermacentor 
variabilis in 8%. 

2.2. Environmental risk factors 

Several meteorological and geographic variables were selected as 
potential covariates of tick occurrence based on tick ecology and pre
vious modeling studies (Hahn et al., 2016; Lippi et al., 2021). Land cover 
and forest canopy data were obtained from the USGS 2019 National 
Land Cover Database (Dewitz, 2021), while elevation and 

meteorological variables were obtained from PRISM (Oregon State 
University, 2014). Included meteorological variables were monthly total 
precipitation, monthly average of the daily maximum temperature, 
monthly average of the daily minimum temperature, average daily 
minimum temperature in January, and monthly average of the daily 
average humidity, calculated from average daily temperature and 
average dew point temperature (Alduchov and Eskridge, 1996). Since 
we are interested in making predictions for future years, 30-year 
meteorological monthly normals were used, defined as the value for 
each month on average over the last 30 years. The continuous covariates 
were centered and scaled prior to all statistical analyses, and the 
monthly minimum temperature was removed due to multicollinearity. 

2.3. Modeling tick distributions using Bayesian regression 

Complete mathematical definitions for the model specification and 
experimental design procedure are given in the Supplemental Methods. 
We used a hierarchical, mixed-effects framework, where correlations 
between the observed tick distributions and various environmental, 
spatial, and temporal effects are captured (Parent and Rivot, 2012). The 
probability of encountering a tick of species j, in a visit to site i during 
month t, is therefore a function of the 7 environmental covariates, the 
survey location, and the month the visit took place. 

To find a model parsimonious with the collections data, 28 candidate 
models were constructed from simplifying different components of the 
full model. Each of the environmental, spatial, and temporal model 
components were considered either shared or different between tick 
groups, and linear or spline-based functions were considered for the 
environmental effects. Models were compared based on the Deviance 
Information Criterion, which measures a model’s goodness-of-fit to the 
data and robustness, while penalizing model complexity. The best per
forming model was used in all subsequent analyses. 

2.4. Experimental design for vector surveillance 

Considering the limited capacity of vector control agencies and re
searchers, a reasonable surveillance strategy should consider the feasi
bility and convenience of sampling sites while allowing sufficient 
diversity to realistically be able to extrapolate to the region of interest. 
To maintain this balance, we restricted future sampling to a set of 57 
sites on public land across South Carolina, of which the 30 sites visited in 
the initial data were a subset. These candidate sites included all 47 South 
Carolina state parks and historic sites, 6 locations within national parks 
and wildlife refuges, and 4 other locations present in the initial data. 
Collection visits were delineated monthly and could take place in any 
month, resulting in a space of 684 possible visits (i.e. month-location 
pairs) which may be added to a candidate survey. 

In BED, potential outcomes (i.e. presence/absence of ticks) resulting 
from a proposed design are assigned a utility, or a score based on the 
quality of new information provided by that outcome. Since the outcome 
of a visit is uncertain prior to sampling, the utility of the design is then 
averaged over the posterior predictive distribution of possible outcomes, 
i.e. predictions given the initial survey data (Fig. 1, step 2). To score 
potential outcomes, two design criteria were considered. First was a 
form of Bayesian d-optimality, which quantifies the volume of uncer
tainty in the posterior covariance matrix for the environmental effects 
(Chaloner and Verdinelli, 1995). This criterion measures how much has 
been learned about the environmental effects as a whole, which grants a 
fuller representation of uncertainty compared to examining the variance 
of each effect individually. Broadly speaking, this criterion will reward 
surveillance schedules that maintain a diverse range of environmental 
conditions. A second criterion was then designed to improve the reli
ability of prediction maps in regions where risk of exposure is highest. 
Here we assigned utility based on the maximum reduction in standard 
deviation of risk from the initial dataset among high risk areas, where 
high risk areas were defined as any point in the spatiotemporal 
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prediction map with expected risk greater than 0.75 for at least one tick 
species. These high risk points were concentrated along the southern 
shoreline of the state in the months of March through May. The 
maximum rather than mean reduction in uncertainty was chosen for 
greater variety compared to the first criterion, and represents an “all-in” 
approach where visits are chosen to target uncertainty at a specific part 
of the prediction map. In contrast, the d-optimality criterion is a more 
“big picture” goal that reflects learning across all visits. 

Equipped with a predictive model and utility function, the space of 
possible designs can be searched to optimize utility (Fig. 1, step 3). 
Because Bayesian design criteria are available in closed form only in the 
simplest cases, mathematical formulae for the utility function are not 
available and numerical methods are typically used. This design space is 
far too vast to test the utility of most designs, therefore specialized 
search techniques are needed to find designs of high quality (Ryan et al., 
2016). We implemented two optimization algorithms – first was a 
simulated annealing algorithm, a common stochastic search technique 
which incrementally adds and removes visits to a design while avoiding 
local minima, and second was an exchange algorithm which rotates 
through neighboring months and sites until no neighbors improve utility 
(Reich et al., 2018). We also considered two heuristics to choose designs 
based on characteristics suspected to lead to high utility, while requiring 
fewer computational resources than optimization. The first chose visits 
with the highest predicted variance given the existing collections data, 
and the second was a space-filling design that spread visits evenly over 
time and prohibited visiting any two parks less than 25 km away from 
each other (Chipeta et al., 2017). We then compared these four search 
strategies to random sampling for an increasing sample size from 5 to 20 
visits, as well as to several repeated sampling scenarios which were 
constructed by repeating aspects of the initial collections data. The 
repeated sampling schemes were to visit the 30 distinct sites from the 
initial collections in June, to visit these 30 sites in December, and to 
repeat the exact schedule performed in 2021. 

3. Results 

In the model comparison study, the model with lowest DIC included 
linear environmental effects shared between species, and both spatial 
and temporal effects separate for each species, although several alter
native models performed nearly as well (Figure S1). The posterior 
environmental and temporal effects from the best performing model are 
summarized in Fig. 2. Daily maximum temperature and January mini
mum temperature both had a strong positive association with tick 
presence, while precipitation had a strong negative association, as co
efficients for these variables had over 95% of the posterior mass above/ 
below zero. Relative humidity, elevation, and a Mixed Forest land cover 
also appear negatively associated with tick presence. The coefficients for 
land cover had particularly high variance, likely due to less data being 
available for any single land cover class. Spatiotemporal prediction 
maps throughout South Carolina for each tick group are shown in Fig. 3, 
while the average predicted risk of visits in the initial collections data 
are compared to the true presence/absence in Figure S2. There appears 
to be reasonably good agreement between the expected risk and the 
observed data. The average predicted risk for both A. americanum and 
Ixodes spp. was high in the southeast of the state, though in different 
months, while average risk was consistently low for all species in the 
northwest. Ultimately, Fig. 3 shows considerable model uncertainty in 
tick presence remains throughout much of the state, illustrating the 
importance of continued surveillance. 

Fig. 4 summarizes the results from the simulation study, with utilities 
of the designs produced by each search method compared to random 
sampling. For the d-optimality criterion, both of the optimization al
gorithms and the space-filling heuristic were able to find designs better 
than any random sample, and had very similar performance for all 
sample sizes, although the space-filling strategy was less computation
ally expensive. The variance heuristic performed comparably or worse 
than random sampling. The repeated sampling designs based on the 

Fig. 2. Posterior environmental and temporal effects from the initial survey. Results are shown for the best-performing model fit to the initial survey data from 2020 
to 2021. All results are in log-odds scale. (A) Marginal posterior means for each species intercept and coefficient for the environmental variables are shown as points, 
while 50% and 95% Highest Posterior Density Intervals are shown as purple bars. (B) Mean temporal trend for each tick group is given by dashed lines, along with 
full marginal posterior densities for each month/tick group. 
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initial schedule also had much lower utility relative to their larger 
sampling budget – revisiting all 30 previously visited sites in June was 
generally worse than choosing 20 visits uniformly at random, as well as 
a schedule of just 10 visits found using exchange. Repeating all 111 visits 
from 2021 had lower utility than designs of 20 visits. Results were 
similar for the second criterion of maximum variance reduction in high 
risk areas, although space-filling was less effective than exchange and 
simulated annealing. Here, repeating the 111 visits from 2021 only 
slightly outperformed the best designs of just 20 visits. For this criterion, 
the best design of 20 locations had an expected utility of 0.1, which 
amounts to a 30–50% reduction in uncertainty for a particular future 
visit. 

To more concretely visualize the output of our experimental design 
pipeline, panels C and D of Fig. 4 show the spatiotemporal distribution of 
proposed visits for both design criteria, laid over the design of the initial 
surveillance data for comparison. There was almost no overlap between 
the initial visits and the proposed designs, with just three such occur
rences across all design criteria and search algorithms. Similarly, iden
tical visits were proposed by the different search techniques in only two 
instances. For both criteria, successful designs spread visits fairly evenly 
across months, although interestingly few visits were proposed in the 
late summer/fall for either criteria. In total over both criteria, January 
and December were the most sampled months while August had the 
least proposed visits. Over the course of the year, each strategy also 
proposed a balanced spread of locations across the state, although the 
middle of the state appears under-sampled relative to the number of 
parks that are located there. 

To further gain a sense of what makes certain surveys better than 
others, the environmental conditions of each possible visit were then 
projected using Factor Analysis for Mixed Data (FAMD), a dimension 
reduction technique for continuous and categorical data (Pagès, 2004). 
The associated covariates are embedded within the four most important 
dimensions and plotted in Figure S3, with the covariates selected by 
each of the search strategies highlighted. For the first criterion, the three 
successful strategies chose visits that spread covariates throughout the 

center of the two most important dimensions, while the variance heu
ristic placed points on the edges and far away from the observed data. 
For the second criterion the successful designs instead placed many 
more points in the bottom-right quadrant of the first and second di
mensions, suggesting that a more specific combination of survey con
ditions were critical for maximizing information regarding certain high 
risk points, although the spread of designs in Fig. 4D makes clear that 
some sampling variability remains beneficial. 

4. Discussion 

Accurate information regarding the time and place of probable tick 
encounters is an essential first step to reducing the burden of tick-borne 
pathogens. Statistical modeling allows extrapolating available infor
mation to a wider scale, which in turn enables local vector control 
agencies to better direct critical resources. However, the reliability of 
such model predictions are critically dependent on the nature of avail
able data. Combining a Bayesian workflow and design of experiments is 
a principled approach to getting more out of data from existing sur
veillance efforts, and directing future efforts for the greatest effect. 
Thanks to advances in software and computing throughout the last 
decade, optimal Bayesian survey design is feasible to implement for a 
diverse array of researchers throughout epidemiology. 

Our results for the application of scheduling monthly tick surveil
lance in public natural areas demonstrate large gains in information are 
possible through carefully chosen surveys. Even when restricting sam
pling to a limited number of locations, efficient survey design can make 
the difference for learning critical information and improving reliability 
of tick distribution maps. Although implementing an optimal surveil
lance design may require additional planing prior to sampling, the 
higher quality of information provided by such designs means that ul
timately fewer visits are required to reach a certain level of confidence. 
Optimal sampling can therefore serve to reduce the overall resources 
necessary for effective surveillance. 

Successful designs can also inform general practices for surveillance. 

Fig. 3. Spatiotemporal mean and standard deviation of risk. Results are shown for the best-performing model fit to the initial survey data. Posterior marginals for the 
probability of tick presence were computed along a 16 km grid of locations across South Carolina, and summarized by the mean (top) and standard devia
tion (bottom). 
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Fig. 4. Comparing search methods for effective designs of tick surveillance. The utility of designs found using different search strategies are compared to 20 rep
lications of random sampling (light blue distributions) for different sample sizes, and to different convenience/repeated sampling schemes (dashed lines; number of 
visits in parentheses). (A) Results from optimizing the d-optimality criterion for the environmental covariates. (B) Results using the maximum variance reduction 
criterion among high risk areas. (C-D) Proposed schedules of 20 visits for the 3 effective search strategies are shown across space and time. The schedule of 170 visits 
used for the initial survey data is shown as gray points. 
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For example, for the first design criterion based on environmental 
covariates, the success of a space-filling strategy shows that spreading 
future visits across time and space is more valuable than other intuitive 
options such as focusing sampling on specific months which were pre
viously under-sampled. Because similar environmental conditions will 
tend to be clustered in time and space, spreading visits in this way will 
tend to spread design points evenly across covariate space as well, which 
is theoretically optimal with respect to the d-optimality criterion for 
simple logistic regression (Chaloner and Larntz, 1989). A similar take
away regarding the second criterion of variance reduction among high 
risk points on the prediction map is that focusing sampling on months or 
parks also with high suspected risk is not an efficient strategy. Instead, 
effective surveys should avoid sampling redundancy and maintain a 
diversity of visits to identify remaining sources of uncertainty for these 
high risk predictions. 

While we have emphasized finding efficient designs using optimi
zation, a secondary takeaway from our analysis is that random sampling 
generally outperforms some common forms of convenience sampling, 
such as repeated sampling or sampling based on current uncertainty. 
This reinforces random sampling as a gold standard catch-all technique 
that is independent of the design criterion (Diekmann et al., 2007). Thus, 
although we have demonstrated that the most effective surveys for 
minimizing uncertainty in tick distribution maps must be found using 
optimization, random sampling could still be a reasonable choice when 
the design goals of future analyses are unclear, or for a preliminary 
round of sampling when little existing information is available. 

Analysis of the initial survey data during model comparison provides 
insight into the current tick patterns in natural areas throughout the 
southeastern US, while also demonstrating further data are needed. The 
top performing models all included a temporal trend for each tick spe
cies (Figure S1), and the posterior marginals for each trend show strong 
seasonal patterns (Fig. 2B). These residual trends could indicate con
tributions from variables not included in the analysis such as iso
thermality (Hahn et al., 2016), or from seasonality in ecological factors 
such as host availability. Another explanation for this temporal trend is 
our use of 30-year normals data, which ignores climatic differences 
between the two years in the initial data that could lead to a temporal 
offset in risk between years. 

The best suited models all included a term for spatial variability for 
each tick species, which has previously been deemed important for 
modeling I. scapularis density (Diuk-Wasser et al., 2010). Overall, the 
large variance in both spatial and temporal effects among top models 
suggests uncertainty in tick presence is due to a combination of un
measured environmental effects, population dynamics, and variability 
inherent to all methods of tick collection in a natural environment 
(Rynkiewicz and Clay, 2014). It is also interesting that the top per
forming model did not include species-dependent nor non-linear effects 
with the environment, as the importance of such non-linear environ
mental effects are frequently stressed when modeling tick distributions 
(Elias et al., 2021; Hahn et al., 2016). This is likely due in part to the 
relatively limited geographic range of our data. 

Our prediction map of expected probability of tick presence in South 
Carolina generally agrees with previously published results, although 
data at a similar spatial and temporal scale are limited. For I. scapularis, 
county level data show 30% of South Carolina counties had an estab
lished tick presence by 2015, most of which were in the southeast region 
of the state (Eisen et al., 2016), while models calibrated to the same data 
predicted suitability in the center of the state as well (Hahn et al., 2016). 
County-level establishment of A. americanum follows a similar pattern as 
I. scapularis (Springer et al., 2014), although predictions based on that 
data indicated all counties were highly suitable (Springer et al., 2015). 
This previous prediction of A. americanum in the northwest of the state is 
in contrast with our findings, as the species was never encountered 
during initial data collection in the region, and our model predicted low 
risk there in all months. 

The application of BED for vector surveillance used in this work 

focused on establishing tick presence in public natural areas, although 
we note that the framework used here can be applied to other metrics 
such as abundance with minimal changes. While measuring tick pres
ence or abundance in outdoor recreational areas such as state parks is a 
widely used method for establishing human exposure risk (Falco and 
Fish, 1989; Hassett et al., 2022), and for detecting expanding ranges of 
ticks and tick-borne pathogens (Johnson et al., 2017), the reliability of 
such data for predicting individualized risk of infection is unclear. For 
Lyme disease, it has been suggested that private property is the main 
source of exposure to host-seeking nymphs (Eisen and Eisen, 2016; Mead 
et al., 2018). The infection status of ticks is also a critical source of in
formation, although the importance of measuring density of infected 
ticks compared to tick prevalence likely depends on the study area. At 
the county level, nymph density has been found ineffective for pre
dicting Lyme disease incidence in low incidence areas, but is comparable 
to density of infected nymphs in high incidence counties (Pepin et al., 
2012). Another limitation with our assumed data collection method is 
that patterns of tick presence and abundance will vary greatly over the 
span of a state park. Thus, establishing the distribution of ticks is ulti
mately just a single step to any comprehensive strategy for vector sur
veillance and control. 

The BED procedure illustrated here suggests several avenues for 
future statistical and computational development. First, additional work 
is needed to better understand optimal designs for the types of mixed- 
effects models used in this and other studies of species distributions, 
as research combining BED and mixed-effects models is scarce (Reich 
et al., 2018; Ryan et al., 2015). Second, specialized optimization stra
tegies for finding optimal survey schedules should be developed, as 
spatiotemporal survey design presents distinct challenges such as 
incomplete control over the environmental conditions available among 
possible visits. Another possibility is to employ adaptive sampling, 
where locations are visited in smaller batches and the data collected 
from each iteration are able to inform sampling in future batches, 
although updating data sequentially leads to additional logistical con
straints during surveillance (Case et al., 2022; Chipeta et al., 2016). A 
final avenue for future work is in the choice of design criteria, which 
may change depending on the specific goals of the analysis. While we 
simply restricted designs to a certain number of visits, researchers with 
different goals or specific resource limitations could employ criteria that 
account for distance traveled, availability of materials, or density of 
human traffic at a particular park and month. More broadly, a general 
procedure for design criteria that adapt to the current needs of local 
vector control agencies would allow widespread application of experi
mental design strategies at a fine-grained spatiotemporal scale. 

5. Conclusions 

In this work, we have outlined Bayesian Experimental Design as a 
formal approach to the surveillance of disease vectors. Compared to 
classical methods of experimental design, a Bayesian framework pro
vides a natural way to incorporate initial survey data, while rigorously 
accounting for remaining uncertainty in model predictions. We applied 
a BED workflow to an ongoing tick surveillance study in South Carolina 
state parks, and found that surveys optimized to satisfy specific goals 
were universally more efficient than simple random sampling. These 
results demonstrate the promise of optimal survey design for researchers 
and vector control agencies to maximize the impact of the data they 
collect. 
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