Optimal testing designs under preferential sampling

2-14-2022

Optimal testing designs

2-14-2022

1 Conditional probabilities review

- 2 Overview of Bayesian experimental design
- 3 Some initial results
- 4 Future directions & discussion

Conditional probabilities

$\mathbf{v} \ p(\boldsymbol{\theta})$ prior distribution. Parameters of the model

• $p(y \mid d, \theta)$ likelihood. Model output with (noisy) observations determined by d

• $p(\theta \mid y, d) \propto p(y \mid d, \theta)p(\theta)$ posterior. Model parameters fit to data

• $p(y \mid d) = \int_{\Theta} p(y \mid d, \theta) p(\theta) d\theta$ model evidence. Probability that y came from model given prior beliefs.

What is (optimal) experimental design?

 Specify how/what data should be collected, according to some goal (or *utility*)

- Minimize response bias, reach certain power, maximize inference
- Several standard definitions of optimal designs

Local vs. global optimality

For design $m{d}$, parameters $m{ heta}$, data $m{y}$, define utility U($m{d}$, $m{ heta}$, $m{y}$). Local:

$$U(\boldsymbol{d}; \boldsymbol{\theta}^*) = \int_{\mathcal{Y}} U(\boldsymbol{d}, \boldsymbol{\theta}^*, \boldsymbol{y}) p(\boldsymbol{y} \mid \boldsymbol{d}, \boldsymbol{\theta}^*) d\boldsymbol{y}$$

Global:

$$U(\boldsymbol{d}) = \int_{\Theta imes \mathcal{Y}} U(\boldsymbol{d}, \boldsymbol{ heta}, \boldsymbol{y}) p(\boldsymbol{y} \mid \boldsymbol{d}, \boldsymbol{ heta}) p(\boldsymbol{ heta}) d\boldsymbol{y} d\boldsymbol{ heta}$$

Examples of utility

Shannon Information Gain:

 $U_{SIG}(\boldsymbol{d}, \boldsymbol{\theta}, \boldsymbol{y}) = \log p(\boldsymbol{y} \mid \boldsymbol{d}, \boldsymbol{\theta}) - \log p(\boldsymbol{y} \mid \boldsymbol{d})$

Negative sum squared error:

 $U_{NSSE}(\boldsymbol{d}, \boldsymbol{\theta}, \boldsymbol{y}) = ||\boldsymbol{\theta} - \mathsf{E}[\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{d}]||_2^2$

Design problems in epidemiology

	Static (decision theory) Sequential	
Observation	y, θ not depend. on d d_t given prior to seeing $y_{1:t-1}$	$\mathbf{y}, \boldsymbol{\theta}$ not depend. on \mathbf{d} d_t depend. on $\mathbf{y}_{1:t-1}$
Control	$\boldsymbol{y}, \boldsymbol{\theta}$ depend. on \boldsymbol{d} \boldsymbol{d}_{t} given prior to seeing $\boldsymbol{y}_{1:t-1}$	$\boldsymbol{y}, \boldsymbol{\Theta}$ depend. on \boldsymbol{d} \boldsymbol{d}_{t} depend. on $\boldsymbol{y}_{1:t-1}$

Some initial results

SIR model with Poisson testing rate:

$$\frac{dS}{dt} = -\beta I(t)S(t), \quad \frac{dI}{dt} = \beta I(t)S(t) - \alpha I(t)$$
$$y_t \mid \theta, n_t \sim \text{Poisson}(n_t I(t))$$

Some initial results

Introducing bias

• Focused on features

- tests applied to symptomatic individuals or approximately at random
- tests applied less preferentially when more available
- Ultimately want property that lots of tests needed for good inference ("feels reasonable" with COVID testing data)
 - Overdispersion?
 - Sensitivity/specificity?
 - Stochastic SIR?

10/16

Positive tests occur at (hidden) rate λ_+

 $\lambda_+ = n_1 p_1 + n_2 p_2$

where (recall $I(t) = I \leq 1$)

$$p_1 = \frac{l}{G+l}$$

$$p_2 = l$$

$$n_1 = n^{-b}, \quad b \in (0,1)$$

$$n_2 = n - n_1$$

BKMC

2-14-2022

Finding the true rate

• Fixed testing budget to predict *I* over *T* days If $y \sim \text{Poisson}(\lambda_+)$, and $p_1 \approx z$. the MLE estimate for *I* is

$$\hat{I} = \frac{y - n_1 z}{n_2}$$

Let $U(n; x, b) = -E_y \left[(I - \hat{I})^2 \right]$. Then utility associated with this particular day is $\frac{n_1}{2} z + I$

$$\frac{1}{n_2}^2 + 1$$

• Balance spreading tests to minimize bias and on high infection days

12/16

- Re-implementation with MonteCarloMeasurements.jl
- Remake pair plot with some different assumptions
- Apply current setup with biased testing
- Explain wtf is going on

Apply biased testing framework in setting with asymptomatic cases, varying disease loads, and quarantine

- Several cool models with simple testing strategies
- Use ABC (and sequential Monte Carlo) to find robust (adaptive) strategies

Larremore, Daniel B., et al. "Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening." Science advances

Optimal testing schedules for model discrimination

- Lots of models use same collection of measurable parameters
- Priors on these params easy, but which model correct?
- $oldsymbol{arphi}$ Sequential design maximizing entropy of $oldsymbol{p}(\mathcal{M} \mid oldsymbol{y}_{1:t}, oldsymbol{d}_{1:t})$

Optimal testing schedules for observing and/or controlling EoN

- Any hope with enormous search space?
- Projection to lower dimensions
- Using moment closures as proxies
- Related to possible work with JGY and TGIR center

16/16